ir al contenido
🔴

Las rarezas de Pi, el número con más fans del mundo (que ni siquiera es un número)

‼️ Envianos tu denuncia o noticia
Versión Beta Reportar error

Resumen

Generado por Inteliegenica Artifical (OpenAI)
Espacio Publicitario
+ Google Noticias
+ Canal WhatsApp

Es muy posible, además, que al escucharlo sigamos la retahíla: quince, noventa y dos, sesenta y cinco… hasta donde nos alcance la memoria para recordar las cifras del singular número Pi.

Pi es la decimosexta letra del alfabeto griego (π) y en matemáticas la usamos para representar algo mucho más interesante que un número (que no digo yo que los números no lo sean). Así pues, la primera rareza de Pi es esa, que no es un número. Pero entonces, si no es un número, ¿qué es Pi?

Pi representa la proporción que guarda la longitud de la circunferencia con su diámetro. Una proporción que tiene la particularidad (aquí su segunda rareza) de ser constante, esto es, de valer siempre lo mismo sin importar lo grande o lo pequeña que sea la circunferencia.

En particular, en la geometría euclídea -la que debemos a Euclides (325-265 a. e. c.) y que nos asegura cosas como que por dos puntos pasa una única recta- el valor constante de Pi es tan especial (y ya van tres) como para ser irracional.

No es que haya perdido la razón, sino que, a pesar ser el resultado de dividir el perímetro entre el diámetro, no puede expresarse nunca como la división de dos números enteros.

Si el diámetro de una rueda es un valor “exacto”, sin decimales, el espacio que recorrerá al dar una vuelta no lo será. Pero, entonces, ¿cuánto será? Nos acercamos a una cuestión clave, el valor de Pi… pero déjenme que antes siga con otra de sus rarezas, la cuarta ya.

Pi es trascendente. No es que sea tan importante como para que transcienda (que también) sino que es trascendente, sin n. Esta propiedad matemática nos asegura que Pi no será nunca la solución de ningún polinomio.

¿Polinomio? Seguro que lo recuerdan de sus estudios de matemáticas. Los polinomios son las ecuaciones en las que la incógnita aparece elevada a uno o varios números naturales, por ejemplo x2 + x + 3 = 0.

Pues bien, da igual los exponentes y los números que se pongan, no hay un polinomio para el que la x valga Pi. Cabe mencionar, además, que esta es una propiedad que no cumplen muchos números, así que, a estas alturas, ya está demostrado que Pi es rarito, pero aún falta lo mejor. Ahora sí, vamos a hablar de su valor.

El escurridizo valor de Pi

Como decíamos al inicio, el valor constante de Pi (en la geometría euclídea) es de 3,141592… pero, precisamente por el hecho de que es irracional, sabemos que tendrá infinitos decimales. Infinitos, como suena, sin fin y, para más inri, en este caso no solo es que sean infinitos, sino que no siguen ningún patrón.

Parecen colocados al azar, con todas las cifras del 0 al 9 teniendo la misma probabilidad de aparecer. De hecho, pueden usarse sus valores como un generador de números aleatorios y es posible buscar entre ellos cualquier sucesión de cifras, incluso el número de DNI de una persona cualquiera, que seguro que se encuentra en alguna parte.

Sin embargo, lo más importante de esta propiedad de Pi es que se ha convertido en una fuente inspiración para el trabajo de muchísima gente.

Desde los tiempos más remotos (hay indicios de que a Pi ya lo conocían los babilonios en el 2,000 a. e. c.) se han hecho esfuerzos por conseguir establecer su valor con la mayor precisión posible. En particular, uno de los primeros en dar sus frutos fue el de Arquímedes de Siracusa (287 – 212 a. e. c.), quien diseño un método para acotar el valor de esta rara constante.

Arquímedes usaba polígonos que se inscribían (los que se sitúan dentro de la circunferencia) y se circunscribían (los que contienen a la circunferencia en su interior). De esta forma, el valor del perímetro de la circunferencia se situaría siempre entre el perímetro del polígono inscrito y el del polígono circunscrito.

Añadiendo cada vez más lados a los polígonos, Arquímedes consiguió dar un intervalo de valores para Pi, que tenía un error máximo del 0,040% sobre el valor real… vamos, cerquita, cerquita.

A la idea de Arquímedes le siguieron muchas otras y de muy diversa índole, algunas incluso desde el punto de vista de la probabilidad y la estadística, como fue el caso del Georges-Luis Leclerc (1707-1788), el Conde de Buffon.

Más reciente